
Design Principles for  
Multi-cloud Interoperability

emma.ms | Design Principles for Multi-cloud Interoperability 1

https://emma.ms


Contents

3 Introduction 
Siloed vs. Interoperable Multi-cloud: Why Interoperability Matters?

4 Understanding Multi-cloud Interoperability

5 Designing the Multi-cloud for Interoperability

11 Enabling Interoperability in Multi-cloud with the emma Platform

emma.ms | Design Principles for Multi-cloud Interoperability 2

https://emma.ms


emma.ms | Design Principles for Multi-cloud Interoperability 3

Introduction
Cloud computing platforms are not one-size-fits-all. That’s why an overwhelming 
majority of organizations utilize more than one kind of cloud and cloud service 
provider. Ideally, workloads running on any cloud should be able to communicate 
and collaborate with each other. This ability of different systems and modules 
to exchange data with each other across clouds is known as multi-cloud 
interoperability. It’s one of the very basic attributes of cloud native systems. 
Without it, much of the cloud’s scalability and agility would be lost. 


In our latest white paper, we discuss the key principles for ensuring 
interoperability in diverse multi-cloud environments, which is not only 
a prerequisite for optimal cloud utilization but also for fostering an ethical and 
free market environment.

Siloed vs. Interoperable Multi-cloud: 
Why Interoperability Matters?
Classically, a multi-cloud was any environment that utilized services from more 
than one cloud provider. However, modern multi-cloud deployments have an 
increasingly diverse portfolio of cloud services as well as cloud types, including 
on-premise, private, and public clouds, all well-integrated to operate holistically 
as a single entity. This shift from a disjointed multi-cloud to an integrated, 
interoperable multi-cloud offers numerous benefits:

1 Seamless deployment, migration, and communication 
across all clouds

2 Localized cloud benefits and cost optimization

3 Horizontal scalability

4 Cross-cloud redundancy and disaster recovery

5 Unified view and control of security and management

https://emma.ms


emma.ms | Design Principles for Multi-cloud Interoperability 4

Understanding Multi-cloud Interoperability
Before jumping into the design principles of an interoperable multi-cloud, it’s 
essential to establish a clear distinction between interoperability and portability. 
Often used interchangeably, they are, in fact, distinct concepts with nuanced but 
significant differences. In the context of a multi-cloud: 

1 Interoperability is the ability of two systems, 
components, or services running on separate clouds to 
work together and communicate with each other 
effectively without significant modifications.

2 Portability is the ability of applications and data to 
migrate from one cloud to another without running 
into errors or losing functionality on the other 
platform. 

The concept of holistic interoperability has several layers to it.

Technical Interoperability

The behavior of interconnected applications or components 
must be consistent and predictable when integrated across 
clouds. Additionally, the protocols used for data transmission 
must be reliable and secure across clouds.  

Semantic Interoperability

The data exchanged between multi-cloud applications or 
services must be understood and utilized correctly. 

Policy Interoperability

The rules, permissions, and access control policies for using 
cloud resources must be consistent and compatible across 
clouds to ensure adherence to organizational policies. 

Collectively, these layers help achieve different aspects of interoperability in a 
multi-cloud ecosystem. 

https://emma.ms


emma.ms | Design Principles for Multi-cloud Interoperability 5

Designing the Multi-cloud for Interoperability
Interoperability is a fundamental attribute of the modern multi-cloud, fostering 
a culture of fair competition, faster innovation, and social responsibility. Below 
are the basic principles that ensure interoperability in data, applications, and 
services. As such, they are all tightly knit and go hand-in-hand in enabling multi-
level interoperability.

Follow microservices-
based design principles 
for application design 
and consuption

API

Use APIs as the default Use cloud agnostic 
coding and minimize use 
of platform-specific 
tools

Automate as much as 
possible to reduce 
complexity

Use CI/CD pipeline, 
agnostic to the cloud 
provider, to increase 
reliability and 
repeatability 

https://emma.ms


emma.ms | Design Principles for Multi-cloud Interoperability 6

Microservices-based Design

A microservices-based design decomposes complex applications into small, loosely 
coupled, and modular components, each focusing on a single functionality. Each 
microservice can be reused, deployed, and scaled individually, reducing 
dependencies, complexity, and the need for rewriting the same code repeatedly. 
However, there are several strategies and technologies that enable flexible, 
adaptable, and independent microservices that are interoperable across any cloud.

Standardized Interfaces

Microservices must communicate with each other through 
standardized and well-defined APIs and protocols. APIs must 
use standard communication protocols, like HTTP/HTTPS for 
RESTful APIs or gRPC for efficient remote procedure calls. This 
ensures that microservices can communicate regardless of their 
technology stack, programming language,  or underlying 
platform. Standardized APIs promote interoperability by 
exposing the functionality and data of each service in a 
consistent way, which allows microservices to understand and 
use each other’s functionality even when hosted on different 
clouds.

Containerization and Orchestration

Containers complement microservices and enhance their 
portability and interoperability by encapsulating service code 
and its dependencies, such as the runtime, libraries, and system 
tools, into a lightweight, isolated, self-contained, and 
executable package that can run consistently across any 
development, test, or production environment on any cloud. All 
major CSPs offer tailored container deployment and 
orchestration services, like AWS Fargate, Amazon ECS (Elastic 
Container Service), and Azure Container Instances (ACI). 
However, in order to ensure multi-cloud interoperability, 
containers must be deployed via a standard, vendor-neutral 
container engine, such as Docker, and orchestrated through 
platform-agnostic tools like Kubernetes. 

Service Meshes

Service meshes, like the open-source and platform-agnostic 
Istio and Linkerd,  provide advanced features and 
infrastructure abstractions for handling service-to-service 
communication, service discovery, load balancing, security, and 
observability between microservices. Service meshes can 
enhance the interoperability of microservices by assuming 
responsibility for network-level services and communication 
logic, thus boosting standardization and consistency in how 
microservices interact with one another.

Event-driven Architecture

Event-driven architecture is a pattern that enables 
microservices to communicate asynchronously in response to 
events. This means that each microservice can operate 
independently without waiting for the sequential execution of 
other tasks. Event brokers and platforms like Apache Kafka® 
and RabbitMQ are responsible for distributing, storing, and 
managing events, which decouples event-producing and event-
consuming microservices. This decoupling enhances 
interoperability among distributed microservices, as they are 
no longer directly dependent on other microservices to perform 
their respective functions.

https://emma.ms


emma.ms | Design Principles for Multi-cloud Interoperability 7

Application Programming Interfaces (APIs)

Standardized communication is crucial for achieving interoperability in a multi-
cloud environment. APIs define how services and applications, with varying 
underlying languages and technology stacks, communicate with each other 
consistently. They serve as a layer of abstraction between applications and cloud-
specific services — instead of communicating directly with cloud-specific services, 
applications can have their own standardized and generic APIs, which can then call 
the cloud-specific API. This abstraction allows applications to communicate with 
similar services from different clouds without needing significant modifications. 


However, there are certain prerequisites for ensuring that the APIs are broadly 
compatible and interoperable. 

Open Standards and Protocols

APIs should conform to widely accepted standards and 
protocols, for instance, adhering to RESTful principles, which 
involve utilizing JSON or XML for data representation and using 
HTTP/HTTPS to define actions (GET, POST, PUT, etc.) on 
resources. In addition, following practices like defining 
standardized endpoints and resource-oriented URIs ensures 
consistency, understandability, and usability of the API across 
clouds.

API Documentation

APIs must be accompanied by detailed documentation providing 
information on endpoints, request/response formats, input 
parameters, and error-handling mechanisms. Well-documented 
APIs are easier for developers to understand and use across 
different platforms effectively. Tools like OpenAPI Specification 
(OAS) or Swagger can help create machine-readable 
documentation for ensuring better standardization, enabling 
automated integration, and facilitating consistent and error-
free interactions between systems and services across any 
cloud platform. 

API Gateways

API gateways are servers or services that provide a centralized 
point for managing and controlling the flow of requests and 
responses between microservices. They standardize inter-
service communication by translating between different 
protocols and data formats. They also handle request routing, 
security, and authentication, thus abstracting the complexity 
of the underlying microservices from API consumers. This 
standardization and abstraction offers compatibility and 
interoperability between services supporting different 
technologies and platforms. 

v.1 API Versioning

Most services with published APIs will need updates and 
modifications that will require changes to the API. It is 
imperative to implement versioning in service APIs to ensure 
consistency and backward compatibility. This ensures 
interoperability between systems that may be using different 
versions of the API. It also allows seamless adaptability across 
multi-cloud platforms where different clouds may have varying 
update schedules and requirements. Tools like Swagger, 
OpenAPI, and Postman allow version information in their API 
documentation. Similarly, many API gateways and management 
tools offer built-in support for versioning.

https://emma.ms


emma.ms | Design Principles for Multi-cloud Interoperability 8

Automation

Automation is the use of tools and scripts to streamline workflows and enable 
actions, decisions, and responses without manual intervention. In a multi-cloud 
environment, automation requires standardization of infrastructure, 
configurations, deployments, and operations across different cloud environments. 
Certain cloud-specific details must also be abstracted in order to maintain a 
common language and approach to managing applications and resources in diverse 
cloud environments.


Automation, through standardization, consistency, and abstraction, enables and 
enhances interoperability in multi-cloud. Several aspects of cloud configuration 
and management can benefit from automation as it boosts reliability, efficiency, 
and interoperability.

Infrastructure as Code (IaC)

IaC abstracts the underlying infrastructure details and 
specifications, defining it in a version-controlled and machine-
readable format that is consistent and reproducible across 
different cloud environments. Tools like Terraform and Puppet 
enable organizations to define and provision cloud resources 
consistently across multiple clouds. 

Configuration Management

Configuration management tools like Ansible, Chef, and Puppet 
abstract the underlying cloud-specific details, enabling 
organizations to define cloud-agnostic configuration playbooks 
for configuring servers, applications, and infrastructure 
resources. These playbooks can then be run across any cloud to 
automate configurations and yield consistent results.

Container Orchestration

Container orchestration tools like Kubernetes automate the 
deployment and scaling of containerized applications. They 
abstract cloud-specific details and provide a consistent way to 
deploy and manage containers across different clouds, making it 
easier to achieve interoperability in multi-cloud. 

Continuous Integration and Continuous Deployment (CI/CD)

CI/CD pipelines are a key part of the DevOps strategy. They 
automate build, testing, and deployment of applications and 
services for faster and more reliable software delivery. 
Carefully implemented CI/CD pipelines support interoperability 
by promoting consistency and enabling automated, early 
detection of compatibility issues that can hamper 
interoperability. 

https://emma.ms


emma.ms | Design Principles for Multi-cloud Interoperability 9

Cloud Agnosticism

Cloud agnosticism ensures that an application or system remains independent of a 
specific cloud provider. Cloud agnosticism, as a design and operational approach, 
can significantly boost interoperability through open standards, abstractions, and 
consistency in deployment. As such, it requires avoiding vendor-specific tools and 
services and embracing open standards and cloud agnostic tools and technologies 
at multiple layers of an application and system design, development, and 
deployment. 

Code and Development

At its core, interoperability demands that applications be 
written using languages and frameworks that are cloud 
agnostic. This means developers should avoid cloud-specific 
APIs, SDKs, and services and opt for open-source libraries and 
tools that work consistently across cloud platforms. Using 
RESTful APIs, gPRC, and other widely accepted protocols for 
application interactions promotes interoperability. 

Infrastructure

At the infrastructure level, cloud agnosticism involves 
designing applications to run and communicate consistently on 
any cloud's virtual machines or containers. Vendor-neutral IaC 
tools like Terraform and Ansible can be used to define cloud 
agnostic infrastructure configurations, thus reducing 
dependencies on cloud-specific features and enabling 
applications to communicate and collaborate seamlessly in a 
distributed, multi-cloud setting. 

Data Storage

To ensure interoperability, data storage solutions should not be 
tightly tied to any particular cloud provider. For instance, 
instead of using AWS DynamoDB as a No-SQL database, 
organizations should opt for an open-source distribution like 
MongoDB or Redis, which are widely supported and can interact 
with applications across different platforms without code 
refactoring. 

Cloud Services

In addition to databases and IaC tools and services, 
organizations should opt for open-source and/or vendor-
neutral versions of any managed offerings they need, for 
instance, choosing Kubernetes instead of AWS EKS, Azure 
Kubernetes Service (AKS), or Google Kubernetes Engine (GKE). 
This ensures that containerized applications across different 
clouds remain interoperable. In cases that necessitate the use 
of a proprietary service, the service should be consumed via API 
abstractions. 

Management Tools

Major cloud providers are now offering multi-cloud platforms, 
like Google Anthos, Azure ARC, and IBM Cloud Satellite, but they 
often restrict organizations to the clouds and environments 
they support. For instance, Google Anthos offers limited 
functionality when it comes to managing clusters in Microsoft 
AKS and Amazon EKS. To fully use Anthos, administrators must 
migrate their workloads to Google's Kubernetes engine. Such 
limitations make multi-cloud management platforms from 
hyperscalers less interoperable as opposed to cloud agnostic 
multi-cloud management platforms, like the emma platform. 
The emma platform supports various containerization 
technologies and extends container management and 
orchestration capabilities to all environments — any cloud, 
edge, or on-premise. 

https://emma.ms


emma.ms | Design Principles for Multi-cloud Interoperability 10

Vendor-Neutral CI/CD Pipeline 

In keeping with the principle of vendor agnosticism, it’s important to embrace 
open-source and vendor-neutral tools throughout the CI/CD pipeline. The idea is 
that organizations must plan for interoperability right from the early stages of 
development. The CI/CD pipeline itself has several stages, each serving a specific 
purpose in the software development and delivery process and utilizing its own 
set of tools and technologies. A vendor-neutral CI/CD pipeline entails that none 
of the tools and technologies utilized across the pipeline are tied to any specific 
cloud or technology vendor. This ensures that the CI/CD process can work with 
diverse technologies, cloud platforms, and infrastructure configurations.


Below are the key stages of a CI/CD pipeline and how each can be made vendor-
independent to ensure consistency and interoperability when different phases of 
the pipeline are executed on different clouds or when different components of the 
same application are deployed across different clouds:

Source Code Repository

The source code must be stored on a cloud-agnostic version 
control system like Git that integrates seamlessly with any 
cloud platform or tools needed for the subsequent stages. 

Continuous Integration

Tools like Jenkins, GitLab, or CircleCI are needed to build and 
test the application continuously. They connect seamlessly with 
Git and work across multiple cloud providers. 

Deployment

Packaging applications into containers using Docker, an open-
source containerization platform, maintains portability. It goes 
hand-in-hand with Kubernetes, which is vendor-neutral itself 
and automates the deployment and coordination of Docker 
containers in complex, large-scale containerized applications 
distributed across multi-cloud clusters. 

https://emma.ms


emma.ms | Design Principles for Multi-cloud Interoperability 11

Enabling Interoperability in Multi-cloud 
with the emma Platform

Enabling an interoperable multi-cloud requires careful planning from the get-go. 
However, ensuring interoperability by design may not be feasible for many 
enterprises in different phases of their multi-cloud journey. emma is a cloud-
agnostic, no-code multi-cloud management platform that takes the complexity 
out of multi-cloud interoperability. It enables different environments, legacy on-
premise, private, public, and multi-cloud, to integrate and work together 
seamlessly through abstractions, single-pane-of-glass visibility, and intercloud 
connectivity. These attributes go beyond technical interoperability to foster 
semantic and policy interoperability as well, creating a cohesive and interoperable 
multi-cloud. 


Here’s how the emma platform facilitates and enables organizations to embrace 
the seemingly complex principles of multi-cloud interoperability:

Microservices Architecture

The emma platform facilitates seamless communication between 
microservices across clouds by abstracting the complexities of 
different cloud interfaces. Its no-code approach allows admins 
to deploy virtual machines and containers across multiple 
clouds in just a few clicks.  
The platform’s load-balancing capabilities that span the entire 
multi-cloud ecosystem, allowing efficient traffic distribution 
and optimal resource utilization across all clouds. 

Cloud-specific APIs

The emma platform ensures consistency in deployment 
mechanisms when dealing with cloud-specific APIs and 
configurations. It abstracts the complexities and variations of 
individual cloud APIs and provides a unified and standardized 
deployment framework. The platform incorporates a powerful 
API gateway that serves as a centralized hub, enabling smooth 
communication across diverse systems and cloud providers.

Automation

The emma platform's Kubernetes capabilities allow automated 
container orchestration across multiple clouds. In addition, 
users can create policies and rules to automate cloud tasks and 
workflows, such as infrastructure resource provisioning, cross-
cloud application scalability, compliance checks, and backups 
and disaster recovery. 

Cloud Agnosticism 

The emma platform abstracts cloud-specific interfaces to 
enable users to deploy workloads on any cloud platform in a 
cloud agnostic manner. The platform itself is cloud agnostic, 
which means it integrates seamlessly with all public, private, 
and on-premise cloud deployments. Organizations can manage 
and integrate their applications and infrastructure regardless 
of where they are hosted, all through a single platform. 

Vendor Agnostic CI/CD Pipelines 

The emma platform supports automated testing, deployment, 
and integration mechanisms through integrations with various 
CI/CD tools.  Organizations can integrate their CI/CD tools, 
such as Jenkins and ArgoCD, to to ensure consistent deployment 
pipelines, automation workflows, and version control in a multi-
cloud environment.

https://emma.ms

